Cocaine? — Totseans


jehsiboijehsiboi Kanga Rump Ranga
edited November 2011 in Man Cave
So does anyone know how they make it?

just curious...


  • wonT0nsOOpwonT0nsOOp Acolyte
    edited October 2011
    GOOGLE, motherfucker, DO YOU USE IT?!?!?!

    On another note, here is the process by which they extract cocaine:
    There are currently two general methods for processing coca leaves into coca paste, hereafter referred to as the solvent extraction technique and the acid extraction technique. The solvent technique (the traditional methodology) was directly derived from one of the original commercial processes developed in the early 20th century23, and remains the most commonly used method in Peru, Colombia, and Ecuador. The acid technique (a much more recently developed methodology) is a considerably more labor-intensive procedure also directly derived from yet another, even older commercial process59. It requires relatively little organic solvent (which is controlled in certain areas of South America), and is currently the most commonly used method in Bolivia. It should be noted that, to the authors' knowledge, all previous literature reports to date summarizing illicit cocaine processing have only detailed out versions of the solvent technique, i.e., this is the first detailed report of the acid technique.

    a. The Solvent Extraction Technique (Scheme 1)

    Scheme 1.
    Illicit production of coca paste via the solvent
    extraction technique (see text for details).

    The coca leaves are macerated, dusted with an inorganic base (usually lime or a carbonate salt), dampened with a minimal amount of water, and placed in a maceration pit - typically either a 55-gallon drum or large plastic barrel, a large metal trough or a staked-out pit lined with heavy-duty plastic. Alternately, an aqueous solution of the inorganic base is pre-mixed, then poured over the macerated leaves. If fresh (i.e., not sun-dried) leaf is used, the operators may not add any water. The addition of the inorganic base ensures that the cocaine is in its free base form. A water-immiscible organic solvent (usually kerosene, less commonly diesel fuel or gasoline) is added to the dampened coca leaf slurry and the mixture is either vigorously mixed for several hours or left standing with occasional stirring for up to 3 days, thereby extracting the cocaine free base into the solvent. The efficiency of the extraction is highly dependent on how much time the leaves spend in contact with the solvent and how much effort the operators have put into macerating the leaves (the finer the leaves have been chopped up, the more efficient the transfer of cocaine base to the solvent). Mechanization of the maceration (e.g., with leaf mulchers) and extraction processes (e.g., with washing machines or cement mixers, etc.) is common. In addition, in certain operations the leaves are reportedly repeatedly extracted to ensure more quantitative recovery of cocaine.

    After completion of the extraction procedure, the solvent is removed from the mixture either by pressing, filtering, draining from a plug, siphoning or other similar means. The resulting solution is usually completely organic, but may contain a small aqueous layer underlying the organic layer. If necessary, the liquid is re-filtered to remove any remaining vegetable matter and, if two layers remain, the lower (aqueous) layer (which is extremely basic due to dissolved lime or carbonate) is separated by pour-off and siphoning and discarded.

    The large volume of organic solvent resulting from the leaf extraction(s) is then back-extracted with a much smaller volume of dilute sulfuric acid, which is added directly to the organic solvent, mixed vigorously for 2 to 10 minutes, then allowed to sit and re-separate. The acid converts the cocaine free base to cocaine sulfate, which dissolves in the aqueous layer. The organic solvent is then separated, leaving only the dilute sulfuric acid solution of cocaine sulfate. This latter yellowish-brown solution is commonly referred to as "agua rica" or "guarapo" (agua rica). The organic solvent is usually re-used indefinitely, with additions of fresh solvent to make up natural attrition due to handling and irrecoverable absorption into the leaf mulch.

    In the final phase of coca paste isolation, an excess of base, usually lime, carbonate, or caustic soda, is slowly added to the agua rica solution with stirring. The base neutralizes the sulfuric acid and converts cocaine sulfate back to the free base, which precipitates out of the solution as a gummy, yellowish solid. This solid is coca paste, which is filtered, dried, packaged, and shipped to a base lab.

    The cocaine content of coca paste generated by the solvent extraction technique varies from 30 to 80%. It contains numerous additional components other than cocaine, including other coca alkaloids and inorganics. However, most of the free carboxylic acids have been removed because of their limited solubility in dilute acid and solubility in dilute alkali solutions. The dried material usually has a "cakey" consistency and usually will not free-flow easily. Although kerosene and diesel fuel are the extraction solvents of choice, many other water-immiscible organic solvents or solvent mixtures may be substituted. Similarly, while any soluble inorganic base may be effectively used for the neutralization of the agua rica solution, carbonate salts are traditionally the most popular because they act as their own visual endpoint indicators. The addition of any carbonate salt to the acidic solution causes vigorous foaming from the release of carbon dioxide gas; thus, the neutralization endpoint is where the addition of carbonate no longer causes foaming of the reaction mixture. This visual endpoint indicator is very useful to operators without access to sophisticated equipment.

    b. Bazuco

    A variant of the solvent technique involves the production of bazuco, a crude preliminary run of coca paste with a low cocaine content. Bazuco is often given to paste laboratory workers as payment or co-payment. It is commonly mixed with tobacco and smoked by the user, and represents a very rapidly growing abuse and addiction problem throughout the cocaine-producing regions of South America2,24. In the most common variant, bazuco is obtained by mixing an insoluble diluent (e.g., flour or ground maize) into the dilute sulfuric acid solution prior to back-extraction of the organic solvent. Following extraction, the diluent-slurred aqueous layer is separated from the organic solvent in the previously described manner, and a base is added to the solution just to the point where some initial precipitation is observed. The solution is allowed to stand a few minutes and is then filtered to co-capture the diluent and this initial crude precipitate of coca paste, which is then air dried to give bazuco. Additional base is then added to the filtrate to precipitate the remainder of the coca paste in the usual manner. Chemically, the preparation of bazuco serves two purposes:

    The diluent-slurred aqueous solution makes an excellent visual indicator of the interface boundary between the two layers; and
    The first precipitate reportedly contains a relatively high content of the cinnamoylcocaines.

    Thus, isolation of bazuco reduces the amount of oxidizing agent required in the next step for the production of coke base (vide infra). Coca paste obtained following preliminary isolation of bazuco is purer and usually whiter in appearance.

    c. The Acid Extraction Technique (Scheme 2)

    Scheme 2.
    Illicit production of coca paste via the acid
    extraction technique (see text for details).

    The coca leaves are placed directly in a maceration pit (almost always a staked-out pit lined with heavy-duty plastic, commonly referred to as a "pozo") containing just enough dilute sulfuric acid to cover the leaves. The leaf/dilute sulfuric acid mixture is vigorously macerated, typically by workers who get in the pit and forcefully stomp the leaves for 1 to 2 hours. The acid converts the cocaine free base in the leaves to cocaine sulfate, which dissolves in the aqueous solution. As with the solvent extraction technique, the efficiency of the extraction depends on how much time the leaves spend in contact with the dilute sulfuric acid solution and how much effort the workers put into stomping the leaves. After the stomping is complete, the acidic coca juice is removed (usually by bucketing) and poured through a coarse filter (to remove any remaining vegetable matter) into a separate decant pit (commonly referred to as a "chiquero"). At this point, an excess of lime or carbonate is added to the isolated dilute sulfuric acid solution with vigorous stirring, thus neutralizing the cocaine sulfate and any remaining sulfuric acid and precipitating a very crude curdled coca paste. The endpoint of the base addition is monitored via spot-testing of small aliquots of the solution with an ethanolic solution of phenolphthalein (called "punto"). The curdled coca paste in the solution is not collectable as such, but is rather back-extracted with a much smaller volume of kerosene, which is thoroughly mixed in for 2 to 10 minutes and allowed to re-separate. After isolation, the kerosene fraction is then handled exactly as in the solvent technique; i.e., the kerosene is back-extracted with a yet smaller volume of fresh dilute sulfuric acid, again generating an agua rica solution.

    The acid technique always involves multiple (3 to 5) extractions of the leaves; i.e., the already stomped leaves are treated with another fresh solution of dilute sulfuric acid and re-stomped. Each pozo extract is handled identically in turn, except that the same agua rica solution is used to back-extract all of the kerosene extracts (thus continually enriching its cocaine content). Following processing of the final pozo extract, the isolated agua rica solution is again handled exactly as in the solvent technique; i.e., made basic via addition of an inorganic base, thereby precipitating coca paste.

    Coca paste generated by the acid technique is essentially equivalent to that produced via the solvent method, and similarly contains from 30 to 80% cocaine. The advantage of the acid versus solvent technique is the use of a minimal volume of organic solvent; however, it is considerably more labor-intensive. This variant is used extensively throughout Bolivia, where personal possession of large volumes (more than 50 liters) of organic solvents (e.g., kerosene) in the coca-growing regions is illegal.

    Chemically, coca paste from either extraction procedure has a gummy consistency and a limited shelf-life. If continuously exposed to excessive heat and humidity, it will slowly self-dissolve, turning into an oily liquid with a pungent, unpleasant odor. This drawback is well known to the clandestine operators; for this reason, coca paste is usually immediately processed to coke base. If this is not possible, it is usually stored as agua rica until further processing is possible.
    2. Coke Base (Scheme 3)

    Scheme 3.
    Illicit production of coke base from
    coca paste (see text for details).

    Conversion of coca paste to coke base is a purification procedure. As was noted above, the cocaine purity level of coca paste varies from 30 to 80%, depending on the extraction technique, variety of coca, and competence of the operators. The remainder consists of inorganic salts and various alkaloidal impurities, notably cis- and trans-cinnamoylcocaine, which are co-extracted from the leaves. Failure to remove these impurities results in a final product (i.e., cocaine hydrochloride) of poorer quality with respect to cocaine content and especially color and appearance. This is well known among laboratory operators, and as a result, this step is rarely skipped.

    Coca paste is first re-dissolved in a small amount of dilute sulfuric acid (thus reconstituting a fresh agua rica solution); as previously noted, the solution has a yellowish-brown color similar to beer. Some operators then slightly increase the pH of the solution with careful addition of base. The solution is then titrated against a concentrated aqueous solution of potassium permanganate, a powerful oxidizing agent. Potassium permanganate gives an intensely purple solution when dissolved in water; as it reacts with the oxidizable alkaloidal impurities in coca paste, it is reduced to manganese dioxide (an insoluble, brown-black solid), which precipitates out of solution. While many operators just add a set volume of concentrated aqueous permanganate to a given weight of coca paste/volume of agua rica (as determined by experience), the more usual method is to slowly add the solution with vigorous stirring, wait a few minutes, and then check to see if the solution has any yellowish-brown color remaining. This is determined by visual inspection of the solution after waiting for the precipitated manganese dioxide to settle out; if the solution is still colored, the addition of the permanganate solution is continued until the solution is finally colorless. Thus, potassium permanganate also acts as its own visual endpoint indicator. Over-addition or too rapid addition of permanganate is known to result in decomposition and loss of cocaine, so the operators work carefully to get it just right.

    When the permanganate addition is judged to be complete, the solution is filtered to remove the precipitated manganese dioxide. The resulting colorless, slightly acidic solution (still commonly referred to as agua rica, hereafter oxidized agua rica) is again treated with a solution of base (usually dilute ammonia at this stage) with stirring. Again, the ammonia neutralizes the cocaine sulfate and any remaining sulfuric acid, thereby precipitating purified coke base, which is filtered, dried, packaged, and transferred to a crystal laboratory.

    a. Direct Leaf-to-Base Laboratories

    In a recently developed and currently quite common variant, both solvent and acid extraction laboratories are being extended to production of coke base. In this alternate, coca paste is never isolated; rather, the unoxidized agua rica solution recovered from back-extracting the kerosene solution is filtered, adjusted (if desired) to higher pH with a carbonate or bicarbonate salt, and then treated directly with the potassium permanganate solution. This is a short-cut technique directly converting coca leaf to coke base, and offers several advantages to the clandestine operators:

    There is a net savings of whatever inorganic base is being used to precipitate coca paste and the sulfuric acid required to reconstitute the agua rica;
    The previously described difficulties associated with the poor shelf-life of coca paste are avoided (coke base is much more stable than coca paste); and
    The operators save a lot of time.

    Coke base generally varies from 80 to 95% cocaine. Since potassium permanganate oxidation tends to remove both the cinnamoylcocaines and other colored impurities typically found in coca paste, the appearance of coke base is usually much lighter, varying from light tan to white; in addition, it has a drier, more mobile (free-flowing) consistency versus coca paste.

    If too little potassium permanganate is used, an individual coke base exhibit may retain significant levels of cinnamoylcocaines (varying as high as 15% relative to cocaine for coke base derived from ECVC). Conversely, if improper mixing, poor pH control, or excess permanganate is used, cocaine itself may be oxidized to N-formylcocaine, which in turn can be hydrolyzed to N-norcocaine8,10,26,33,60. N-norcocaine can also undergo an intramolecular transamination reaction, giving N-benzoyl norecgonine methyl ester26,60. Thus, poor potassium permanganate oxidation techniques contribute directly to the relative amounts and types of impurities found in the coke base and eventually in the resulting cocaine hydrochloride (i.e., high cinnamoylcocaines with low N-norcocaine and N-formyl cocaine contents or low cinnamoylcocaines with higher N-norcocaine, N-formylcocaine, and N-benzoyl norecgonine methyl ester contents).

    b. Alternate Oxidizing Agents

    Although potassium permanganate is the most popular oxidizing agent (primarily because of its ready availability and the color change associated with its use), several alternate oxidizing agents have been increasingly reported. The efficacy of these latter reagents is under current investigation at this laboratory.
    3. Cocaine Hydrochloride (Scheme 4)

    Scheme 4.
    Illicit production of cocaine hydrochloride
    from coke base (see text for details).

    As was previously noted, crystal laboratories mark the switchover from the cottage industry of paste, base, and direct leaf-to-base laboratories to much larger, more sophisticated and centralized operations. Crystal laboratories are usually supplied with coke base either from a specific network of feeder base laboratories or from open-market middlemen. As was previously noted, the quality of the coke base is directly reflected in the corresponding quality of the final product; therefore, all coke base is spot-checked prior to conversion to the hydrochloride. Poor quality base is either returned to the suppliers or re-oxidized (i.e., resubmitted to permanganate oxidation) either on-site or in separate, large-scale re-oxidation laboratories. In some operations, all coke base is re-oxidized as a normal matter of course.

    The illicit production of cocaine hydrochloride is not handled in large batches, but rather as a very large number of small batches. Nearly all operations work on a 1 kg scale, with a few varying up to as much as 5 kg/batch. A very large crystal laboratory may have hundreds of individual batches running simultaneously in a 24 h/day operation.

    Procedures often vary dramatically from laboratory to laboratory, especially with respect to solvent use. In the classic variant, for each batch, the coke base is dissolved into diethyl ether, filtered or decanted from any remaining insoluble impurities, and an equal volume of acetone containing a stoichiometric quantity of concentrated hydrochloric acid added to the filtrate with stirring. The hydrochloric acid immediately ion-pairs with the coke base to give cocaine hydrochloride, which begins to precipitate out of the solution as shiny white, flaky crystals. The use of excess concentrated hydrochloric acid is avoided due to the development of a distinct yellow color (especially in acetone), which in turn can be partially conferred upon the cocaine hydrochloride; this is unacceptable from a marketing viewpoint. If time is not a critical factor, the resulting solution is allowed to sit from 3 to 6 hours in order to complete the crystallization process. If the laboratory operators are rushed, however, the individual batches are placed in a hot water bath (called a "baño María"), which reduces the total reaction time to approximately 30 min. Use of the baño María technique reportedly results in cocaine hydrochloride of slightly reduced quality with respect to appearance. After completion of the crystallization process, the product is filtered, dried under heat-lamps and/or microwave ovens, pressed, packaged, and shipped to distribution networks. Spent solvents are usually recycled, either on-site or at a separate recycling facility. The insoluble impurities filtered off from the initial diethyl ether solution are not discarded, but rather are re-dissolved in dilute sulfuric acid, precipitated via addition of dilute ammonia and handled as bazuco (vide supra).

    As was noted before, diethyl ether/acetone 1:1 is the classic solvent combination for the crystallization process. However, due to the current difficulties in obtaining acetone and (especially) diethyl ether in South America, use of alternate solvents or solvent mixtures for the above A + B addition procedure is quite common. The critical factors in solvent mixture composition are:

    Solubility of coke base in solvent A;
    Miscibility of solvent B with concentrated hydrochloric acid; and
    Insolubility of cocaine hydrochloride in the combined A + B solvent mixture.

    Unsubstantiated reports suggest that laboratory operators select solvent mixtures based on density; i.e., by attempting to match the "ideal" densities of diethyl ether (0.715 g/mL), acetone (0.795 g/mL) and diethyl ether/acetone 1:1 (ca. 0.755 g/mL). The most common solvents currently identified in illicit cocaine include (in approximate order of importance): methyl ethyl ketone, toluene, methylene chloride, ethyl acetate, aliphatic hydrocarbons (hexanes, etc.), acetone, benzene, methyl acetate, isobutyl alcohol, and diethyl ether4,28,32. Use of standard industrial, cleaning, or processing solvent mixtures, e.g., ESSO 10/20, is also common. The overall effects of the use of these alternate solvents on the impurity profile of the resulting cocaine hydrochloride is under current investigation at this laboratory.

    Illicit, unadulterated cocaine hydrochloride generally varies from 80 to 97% purity, and can vary in appearance from an off-white powder to white, iridescent crystals virtually indistinguishable (visually) from pharmaceutical cocaine. Not unexpectedly, most of the alkaloidal impurities present in the starting coke base are carried through the crystallization procedure and appear in the final product.

    Fig. 1. Illicit synthetic cocaine, step 1-312:

    Production of 2-carbomethoxytropinone;
    Its conversion to Methyl Ecgonine; and
    Benzoylation to Cocaine.

    Only single enantiomers depicted for simplicity.

    B. Illicit Synthetic Cocaine

    The classic total synthesis of cocaine involves three synthetic, one enantiomeric resolution and one diastereomeric purification steps (Figure 112,22), and requires a significantly high level of synthetic expertise and well-equipped laboratory facilities. The synthesis will produce a pair of racemic diastereomers (of which only one, i.e., (-)-cocaine, is physiologically active) if the enantiomeric resolution and diastereomeric purification steps are omitted. To date, there have been only three seizures of illicit synthetic cocaine laboratories in the United States. All three followed the classic synthesis; however, none of the three performed the enantiomeric resolution step. Two of these laboratories were run by clandestine operators with advanced chemical training, and successfully produced very low yields of racemic cocaine.

    The first step involves a ring coupling Mannich reaction using methylamine, succindialdehyde, and acetonedicarboxylic acid monomethyl ester in high dilution in a buffered, aqueous solution at 25°C. After 2 days, the reaction mixture is made basic and extracted with chloroform to give racemic 2-carbomethoxytropinone; tropinone is the major impurity. Enantiomeric resolution of the racemate can be accomplished at this point with (+)- and (-)-tartaric acid; however, as noted above, none of the operators of the three clandestine laboratories seized to date attempted such a resolution.

    In step two, the 2-carbomethoxytropinone is dissolved in a minimal volume of ice-cold dilute sulfuric acid and reduced to methyl ecgonine with a 1 to 1.5% Na/Hg amalgam at pH 3.5 and 5°C. Reaction conditions are critical; poor pH and/or temperature control results in both decarboxylation of 2-carbomethoxytropinone to tropinone (which is, in turn, reduced to tropine and pseudotropine) and C-2 epimerization of methyl ecgonine to pseudoecgonine methyl ester. After several hours, the reaction is made basic, extracted with chloroform, and evaporated to an oil containing methyl ecgonine and pseudoecgonine methyl ester in an approximate 3:1 ratio. Additional impurities usually include tropinone, tropine, pseudotropine and unreacted 2-carbomethoxytropinone. The majority of pseudoecgonine methyl ester is precipitated from the oil by the addition of diethyl ether and removed via filtration. The filtrate is evaporated to dryness, dissolved in diethyl ether and converted to the hydrochloride. None of the operators of the three clandestine laboratories seized to date attempted to purify their methyl ecgonine any further than the pseudoecgonine methyl ester precipitation step.

    In step three, the methyl ecgonine hydrochloride is benzoylated with benzoyl chloride in pyridine near 0°C. After 24 h, the reaction mixture is allowed to warm to room temperature and is diluted with diethyl ether, which precipitates a cocaine HCl/pyridine HCl complex. This precipitate is filtered and washed with additional ether to remove excess pyridine, dissolved in water, and extracted with additional ether to remove benzoic acid. The resulting aqueous solution is made basic with dilute ammonium hydroxide (causing dissociation of the cocaine HCl/pyridine HCl complex), and repeatedly extracted with methylene chloride. The combined extracts, which also contain the remaining free pyridine, are evaporated to dryness to give cocaine base, which is re-dissolved in diethyl ether/acetone 1:1 and converted to the hydrochloride via addition of a stoichiometric amount of concentrated hydrochloric acid. As noted above, the clandestine manufacture of illicit synthetic cocaine is extremely unusual. This is not surprising, because - even when attempted by a skilled chemist - the preparation of (-)-cocaine via total synthesis proceeds in less than 10% overall yield. This is clearly economically infeasible in view of the relatively low cost and ready availability of illicit natural cocaine.

    The above is to make coca paste. processing info can be found at:
  • GallowsGallows Regular
    edited October 2011
    There's a nice .pdf that outlines a scaled down method of extracting cocaine. Pictures are included.

    Here you go:
  • Rumple ForeskinRumple Foreskin Regular
    edited October 2011
    good luck making it your self. Do you have all the resources to pull this shit off?
  • jehsiboijehsiboi Kanga Rump Ranga
    edited October 2011
    In no way am i thinking or planning to make cocaine nor do i have said ingredients or tools to perform such a task...

    that being said this info was quite interesting
  • MolecularSuperstructureMolecularSuperstructure Semo-Regulars
    edited November 2011
  • angryonionangryonion Just some guy
    edited November 2011
    Coke is a hella fun drug if you got money for the good shit.
    Otherwise don't bother.
  • MolecularSuperstructureMolecularSuperstructure Semo-Regulars
    edited November 2011
    angryonion wrote: »
    Coke is a hella fun drug if you got money for the good shit.
    Otherwise don't bother.
    Lack of good quality shit is the reason I don't fuck around with it anymore, very rarely does some really good fire come around
  • xbcnfujvxbcnfujv Regular
    edited November 2011
    i refuse to buy coke for the simple fact that i'm being profited/hustled off by some fuckhead.

    the value of cocaine really is dirt cheap.

    i'd take an adderal any day over a line of good coke.
  • proudclod9proudclod9 Regular
    edited November 2011
    Jeez, he should fuck off to Iran or North Korea if he wants to gag people. This is the land of the free. What a prick!

    Freedom ain't free, bitch!--I'm sure you know by now..haha
  • proudclod9proudclod9 Regular
    edited November 2011
    Back on topic:

    Isn't there a plant that has Meth/Amps in it also?

    It's just a shame that such a useful chemical gets such a bad name...from us people..haha

    And that we send billions of dollars to columbia to "combat the problem" Ha!~

    What a joke.
  • Rumple ForeskinRumple Foreskin Regular
    edited November 2011
    chewing and making coca leaf tea will bring about similar effects as cocaine just not as strong. I know you can buy the leaves online off ebay and other sites for free and in bulk. I've been wanting to try the tea. I know that would be a great way to kick start the day.
  • SpinsterSpinster Regular
    edited November 2011
    chewing and making coca leaf tea will bring about similar effects as cocaine just not as strong. I know you can buy the leaves online off ebay and other sites for free and in bulk. I've been wanting to try the tea. I know that would be a great way to kick start the day.

    Could you smoke it?
Sign In or Register to comment.